105 research outputs found

    Presence of two phylogenetically distinct groups in the deep sea mussel Acharax (Mollusca, Bivalvia, Solemyidae)

    Get PDF
    The family Solemyidae represents ancestral protobranch bivalves with the shallow-water genus Solemya and the deep-sea genus Acharax. All known members of this family host symbiotic sulfur-oxidizing bacteria in their gill filaments. Analysis of 18S rRNA gene sequences of Acharax specimens from methane-seeps off Makran (Pakistan), Java (Indonesia), the Aleutian Trench and off the Oregon, Costa Rica, and Peru margins revealed that Solemya spp. and Acharax spp. are well-separated genetically. This supports the current systematic distinction based on morphological criteria. We found 2 clearly distinct clusters within the genus Acharax, with specimens from the Makran, Oregon and Peru (MOP) margins in one (MOP–Acharax) cluster, and those from Java, the Aleutian Trench and Costa Rica (JAC) in the other (JAC–Acharax) cluster. The separation of MOP– and JAC–Acharax clusters from each other and from Solemya (S. reidi and S. velum) is well-supported by phylogenetic calculations employing maximum likelihood and maximum parsimony. Compared to genetic distances among other protobranch groups, distances between the MOP– and JAC–Acharax clusters would justify the affiliation of these clusters to separate species. This implies that species differentiation in Acharax based on shell morphology is likely to underestimate true species diversity within this taxon. Furthermore, our results support the hypothesis that genetic separation of Solemya and Acharax is congruent with the phylogeny of their bacterial endosymbionts

    Civil Service Management in Nepal: Evidence from a Survey of More than 1,200 Public Servants

    Get PDF

    On the equivalence of strong formulations for capacitated multi-level lot sizing problems with setup times

    Get PDF
    Several mixed integer programming formulations have been proposed for modeling capacitated multi-level lot sizing problems with setup times. These formulations include the so-called facility location formulation, the shortest route formulation, and the inventory and lot sizing formulation with (l,S) inequalities. In this paper, we demonstrate the equivalence of these formulations when the integrality requirement is relaxed for any subset of binary setup decision variables. This equivalence has significant implications for decomposition-based methods since same optimal solution values are obtained no matter which formulation is used. In particular, we discuss the relax-and-fix method, a decomposition-based heuristic used for the efficient solution of hard lot sizing problems. Computational tests allow us to compare the effectiveness of different formulations using benchmark problems. The choice of formulation directly affects the required computational effort, and our results therefore provide guidelines on choosing an effective formulation during the development of heuristic-based solution procedures

    16S rDNA-based phylogeny of sulfur-oxidizing bacterial endosymbionts in marine bivalves from cold-seep habitats

    Get PDF
    The phylogenetic relationship of sulphur-oxidising endosymbiotic bacteria from bivalves of the families Vesicomyidae (Calyptogena sp. C1, Calyptogena sp. C3), Solemyidae (Acharax sp.) and Thyasiridae (Conchocele sp.) from cold-seep habitats were determined by 16S rDNA nucleotide sequence analyses. The endosymbiotic bacteria form distinct groups within the gamma-Proteobacteria and are well separated from each other and from free-living sulphur-oxidising bacteria of the genera Beggiatoa, Halothiobacillus and Thiomicrospira. The endosymbiotic bacteria of Acharax sp. from cold seeps off Oregon, Indonesia and Pakistan have sequences highly similar to each other but quite distinct from other thiotrophic endosymbionts. This includes endosymbionts from Solemya spp., to which they are distantly related. Symbiotic bacteria of Conchocele sp. from a cold seep in the Sea of Okhotsk are similar to those of Bathymodiolus thermophilus and related species, as shown by their overall sequence similarity and by signature sequences. The endosymbiotic bacteria of Calyptogena spp. from cold seeps off Oregon and Pakistan are closely related to those of other vesicomyids. Endosymbiont species found off Oregon corresponded to 2 different clusters of Calyptogena spp. symbionts in the same samples. The results corroborate the hypothesis of a monophyletic origin of the symbionts in vesicomyid clams, and support the existence of deeply branching groups in solemyid symbionts and of divergent lines and distribution for thyasirid symbionts. The results also indicate that certain symbiont species cluster according to the depth distribution of their hosts, and that in consequence host species together with their symbionts may have undergone depth-specific adaptation and evolution

    Responding to COVID‐19 through Surveys of Public Servants

    Get PDF
    Responding to COVID‐19 presents unprecedented challenges for public sector practitioners. Addressing those challenges requires knowledge about the problems that public sector workers face. This Viewpoint essay argues that timely, up‐to‐date surveys of public sector workers are essential tools for identifying problems, resolving bottlenecks, and enabling public sector workers to operate effectively during and in response to the challenges posed by the pandemic. This essay presents the COVID‐19 Survey of Public Servants, which is currently being rolled out in several countries by the Global Survey of Public Servants Consortium to assist governments in strategically compiling evidence to operate effectively during the COVID‐19 pandemic

    Thermodynamic properties of a tetramer ferro-ferro-antiferro-antiferromagnetic Ising-Heisenberg bond alternating chain as a model system for Cu(3-Clpy)2_2(N3_3)2_2

    Full text link
    Thermodynamic properties of a tetramer ferro-ferro-antiferro-antiferromagnetic Ising-Heisenberg bond alternating chain are investigated by the use of an exact mapping transformation technique. Exact results for the magnetization, susceptibility and specific heat in the zero as well as nonzero magnetic field are presented and discussed in detail. The results obtained from the mapping are compared with the relevant experimental data of Cu(3-Clpy)2_2(N3_3)2_2 (3-Clpy=3-Chloropyridine).Comment: 10 pages, 1 table, 14 figures, to be presented at CSMAG04 conferenc

    Magnetic excitations and effects of magnetic fields on the spin-Peierls transition in CuGeO3_3

    Full text link
    We analyze the magnetic excitations of a spin-1/2 antiferromagnetic Heisenberg model with alternating nearest neighbor interactions and uniform second neighbor interactions recently proposed to describe the spin-Peierls transition in CuGeO3_3. We show that there is good agreement between the calculated excitation dispersion relation and the experimental one. We have also shown that this model reproduces satisfactorily the experimental results for the magnetization vs. magnetic field curve and its saturation value. The model proposed also reproduces qualitatively some features of the magnetic phase diagram of this compound and the overall behavior of the magnetic specific heat in the presence of applied magnetic fields.Comment: 12 pages Revtex v2.0 + 4 figures postscripts include

    Mixed integer programming in production planning with backlogging and setup carryover : modeling and algorithms

    Get PDF
    This paper proposes a mixed integer programming formulation for modeling the capacitated multi-level lot sizing problem with both backlogging and setup carryover. Based on the model formulation, a progressive time-oriented decomposition heuristic framework is then proposed, where improvement and construction heuristics are effectively combined, therefore efficiently avoiding the weaknesses associated with the one-time decisions made by other classical time-oriented decomposition algorithms. Computational results show that the proposed optimization framework provides competitive solutions within a reasonable time

    Spin Dynamics of the One-Dimensional J-J' Model and Spin-Peierls Transition in CuGeO_3

    Full text link
    Spin dynamics as well as static properties of the one-dimensional J-J' model (S=1/2, J>0 and 0\le \alpha=J'/J\le 0.5) are studied by the exact diagonalization and the recursion method of finite systems up to 26 sites. Especially, the dynamical structure factor S(q,\omega) is investigated carefully for various values of \alpha. As \alpha increases beyond the gapless-gapful critical value \alpha_c=0.2411, there appear features definitely different from the Heisenberg model but the same with the Majumdar-Ghosh model. Some of these features depend only on the value of \alpha and not on \delta: a parameter introduced for the coupling alternation. By comparing these results with a recent inelastic neutron scattering spectrum of an inorganic spin-Peierls compound CuGeO_3 [M. Arai et al.: Phys. Rev. Lett. 77 (1996) 3649], it is found that the frustration by J' in CuGeO_3 is unexpectedly strong (\alpha=0.4-0.45), and at least \alpha must be larger than \alpha_c to some extent. The value of J is evaluated at \sim 180K consistent with other estimations. The coupling alternation is extremely small. This large frustration is a primary origin of the various anomalous properties CuGeO_3 possesses. For comparison we refer also to \alpha'-NaV_2O_5.Comment: 14 pages. A hard copy of 20 figures is available on request. To be published in J. Phys. Soc. Jpn. Vol. 66 No. 11 (1997
    corecore